
Advanced Buildings PEM FC Project

DOE Hydrogen, Fuel Cell, and Infrastructure Technologies Program Review Meeting

Arne LaVen
IdaTech, LLC
May 25,2004

This presentation does not contain any proprietary or confidential information

Programmatic Objectives

- To demonstrate high electrical and overall efficiency, reduced energy consumption, and reduced emissions for hotel and followon applications.
- To overcome technical and cost barriers through the engineering, design and construction of an integrated system utilizing advanced fuel cell, fuel processor, and balance of plant subsystems.
- To validate a 50 kW PEM fuel cell system design through field testing at three separate properties to be co-selected by Marriott International, Sempra Utilities and Puget Sound Energy.
- To use the information provided from this demonstration to target early market entry opportunities.

Project Budget

Phase Description	\$ Federal	\$ Cost Share (35%)	\$ Total
Feasibility (Phase 1) Complete	484,336	260,812	745,178
Engineering (Phase 2)	2,575,867	1,387,005	3,962,872
Construction (Phase 3)	2,615,334	1,408,257	4,023,591
Field Evaluation (Phase 4)	591,024	318,244	909,268
Total	6,266,591	3,374,318	9,640,908

DOE Technical Targets

50 – 250 kW Range

Table 3.4.6 Technology Targets: Integrated Stationary PEMFC Power Systems.

Characteristics	Units	2003	2005	2010
Electric Efficiency (Rated Power)	%	30	√ 32 1%<	40
CHP Energy Efficiency (Rated Power)	%	70	75 1%	80
Cost (200 units / yr → 5000 units / yr)	\$/kWe	2500	1250 80	750
Durability (10% Degradation)	Hour	15k	30k 2k<	40k

Note: Additional Characteristics Are Identified in DOE's Technical Plan

DOE Technical Barriers

3.4.4.2 Barriers

Dist Generation Barriers

- **E. Durability** → MEA Life
- F. Heat Utilization → Condensing heat exchangers
- G. Power Electronics → High Efficiency, Low Cost, Water Cooled

Fuel Flexible Fuel Processor Barriers

- J. Durability → Sulfur Handling, Catalyst Longevity
- **K. Emissions** → Using "top of class" Commercial Combustion Equipment
- L. Hydrogen Purification → Proven PSA technology
- M. Integration and Efficiency → Approaching Theoretical Values
- N. Cost → Industrial Catalysts and Material Optimization

Component Barriers

- O. Stack Material and Manufacturing Costs → Molded Plates
- P. Durability → BOP, Sensor Reduction, System Simplification
- R. Thermal and Water Management → Non water-based cooling

Approach (technical)

System Modularity by Function

Fuel Treatment Module

- Reversible Sulfur Adsorbing Cycle

- Low Cost Water Treatment

- High Recovery Pressure Swing Adsorption System

Fuel Processor Module - Scale Up From Existing 5 kW Reactor Geometry

- Industrial Catalyst and HEX Design

- ASME and CE Stamped Pressure Vessels

Fuel Cell Power Module

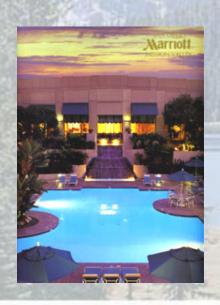
- Scale Up From Existing 10 kW Power Module

- Long Life MEA Optimization (Configuration and Operation)

- Power Electronics

Thermal Module

- Fuel Cell Temperature Control
- Condensing Heat Exchangers
- Low Pressure Drop



Approach (markets)

- Hotels as the "Beachhead Segment"
 - High utilization capacity of electrical and thermal load.
 - Corporate energy managers with the strategic vision and resources to validate and deploy new technologies.
 - Resulting product will be applicable to many follow on markets:
 - Government and Military Buildings, Hospitals, Prisons, Multi-Dwelling, Laundry Facilities.

Project Safety

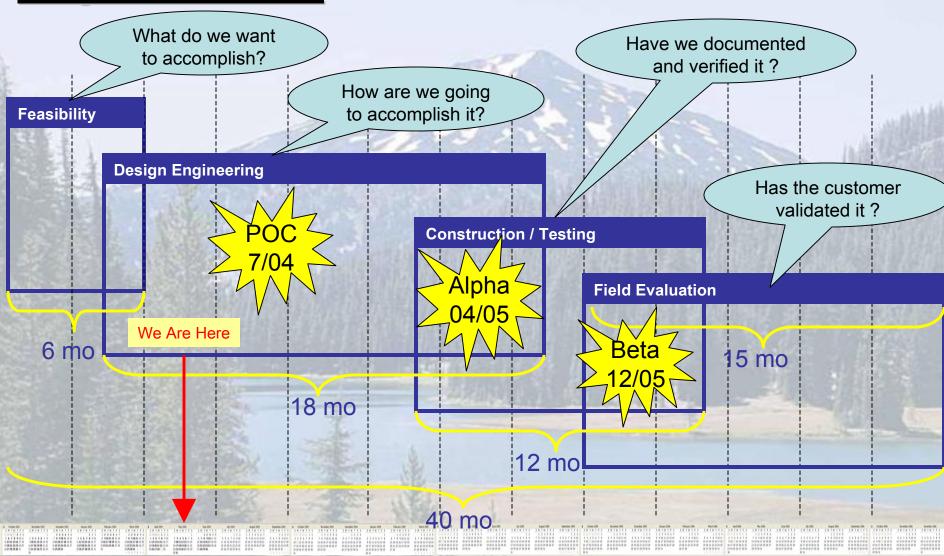
Infrastructure Improvements

- Installed Redundant CO, Combustible Gas and H2 detectors.
- Explosion Proof Development Ventilation System.
- Vacuum Loss Interlocks on all Ventilation Systems.
- Emergency Stop Switches For All Energy Sources.

Design Safety Process Procedures

- HAZOP analysis (POC, Alpha, and Beta Stages).
- FMEA (Failure Mode Effect Analysis).
- ECO (Engineering Change Order) at Beta Stage.
- CSA Product Rating

Design Documents


- NFPA 853
- CSA FC1

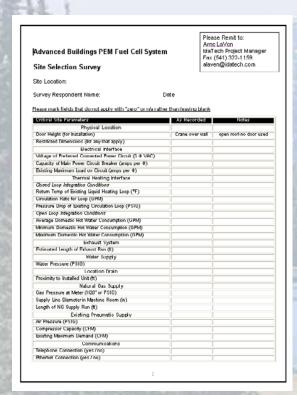
Project Timeline What do we want

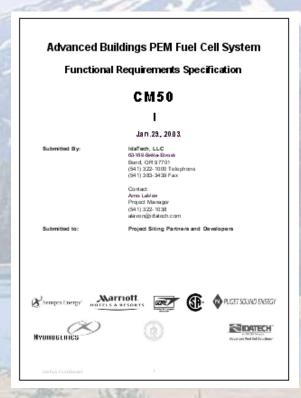
Feasibility Phase Objectives

Phase 1) Feasibility Study:

To define and communicate the project expectations, targets and functional requirements to all project stakeholders.

Task 1: Feasibility Engineering			
Actions / Milestones	Deliverables		
Develop Site Selection Criteria	Special and Quarterly Reports		
Develop Functional Requirements Specification	Publish Functional Requirements Specification		
Develop System Model	Publish Process Flow Diagram's		
Identify Candidate Sites	Integrated Product Team Meeting		

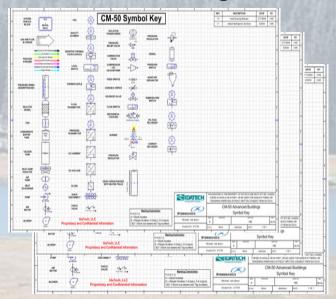




Technical Progress

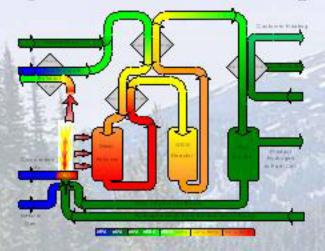
Site Selection Criteria

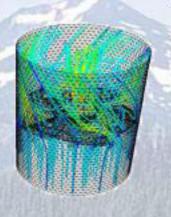
Functional Requirements



Candidate Sites

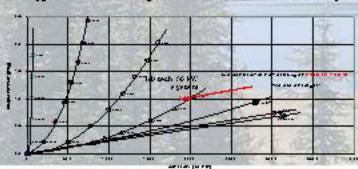
Process Flow Diagrams




Technical Progress

System Process Modeling

Dynamic Modeling


Physical Modeling

Balance of Plant Testing

(parasitic power reduction)

Catalyst / Sulfur Adsorbent Testing

Interactions and Collaborations

Technical Subcontractor – Development of FCPM

Beta Demonstration Siting Partner

Beta Demonstration Siting Partner

Northern Utility Siting Partner

Southern Utility Siting Partner

Safety and Agency Approval Partner

Future Work

Phase 2) Design Engineering:

Design verification of four system sub-modules: (FTM, FPM, FCPM, and TMM) using a proof of concept and Alpha development cycle. Alpha modules are integrated into a complete prototype system (aCM50) to be used for controls development and long term testing.

Task 2: Design Engineering				
Actions / Milestones	Deliverables			
Proof of Concept Design	Special and Quarterly Reports			
POC Test Data / Design Review	HAZOP Reports			
Alpha Design	Code Compliance Review			
Alpha Test Data/ Design Review	Integrated Product Team Meeting			

